Physical Fitness and Mitochondrial Respiratory Capacity in Horse Skeletal Muscle
نویسندگان
چکیده
BACKGROUND Within the animal kingdom, horses are among the most powerful aerobic athletic mammals. Determination of muscle respiratory capacity and control improves our knowledge of mitochondrial physiology in horses and high aerobic performance in general. METHODOLOGY/PRINCIPAL FINDINGS We applied high-resolution respirometry and multiple substrate-uncoupler-inhibitor titration protocols to study mitochondrial physiology in small (1.0-2.5 mg) permeabilized muscle fibres sampled from triceps brachii of healthy horses. Oxidative phosphorylation (OXPHOS) capacity (pmol O(2) • s(-1) • mg(-1) wet weight) with combined Complex I and II (CI+II) substrate supply (malate+glutamate+succinate) increased from 77 ± 18 in overweight horses to 103 ± 18, 122 ± 15, and 129 ± 12 in untrained, trained and competitive horses (N = 3, 8, 16, and 5, respectively). Similar to human muscle mitochondria, equine OXPHOS capacity was limited by the phosphorylation system to 0.85 ± 0.10 (N = 32) of electron transfer capacity, independent of fitness level. In 15 trained horses, OXPHOS capacity increased from 119 ± 12 to 134 ± 37 when pyruvate was included in the CI+II substrate cocktail. Relative to this maximum OXPHOS capacity, Complex I (CI)-linked OXPHOS capacities were only 50% with glutamate+malate, 64% with pyruvate+malate, and 68% with pyruvate+malate+glutamate, and ~78% with CII-linked succinate+rotenone. OXPHOS capacity with glutamate+malate increased with fitness relative to CI+II-supported ETS capacity from a flux control ratio of 0.38 to 0.40, 0.41 and 0.46 in overweight to competitive horses, whereas the CII/CI+II substrate control ratio remained constant at 0.70. Therefore, the apparent deficit of the CI- over CII-linked pathway capacity was reduced with physical fitness. CONCLUSIONS/SIGNIFICANCE The scope of mitochondrial density-dependent OXPHOS capacity and the density-independent (qualitative) increase of CI-linked respiratory capacity with increased fitness open up new perspectives of integrative and comparative mitochondrial respiratory physiology.
منابع مشابه
Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes.
Changes in skeletal muscle respiratory capacity parallel that of aerobic fitness. It is unknown whether mitochondrial content, alone, can fully account for these differences in skeletal muscle respiratory capacity. The aim of the present study was to examine quantitative and qualitative mitochondrial characteristics across four different groups (n = 6 each), separated by cardiorespiratory fitne...
متن کاملSkeletal muscle ex vivo mitochondrial respiration parallels decline in vivo oxidative capacity, cardiorespiratory fitness, and muscle strength: The Baltimore Longitudinal Study of Aging
Mitochondrial function in human skeletal muscle declines with age. Most evidence for this decline comes from studies that assessed mitochondrial function indirectly, and the impact of such deterioration with respect to physical function has not been clearly delineated. We hypothesized that mitochondrial respiration in permeabilized human muscle fibers declines with age and correlates with phosp...
متن کاملChanges in Mitochondrial Dynamic Factors (mfn2 and drp1) Following High Intensity Interval Training and Moderate Intensity Continuous Training in Obese Male Rats
Objective: Mitochondrial content and function are important determinants of oxidative capacity and metabolic efficiency of skeletal muscle tissue. The aim of this study was to investigate the changes in mitochondrial dynamic factors (mfn2 and drp1) following high intensity interval training (HIIT) and moderate intensity continuous training (MICT) in obese male rats. Materials and Methods: In t...
متن کاملHistochemical And Electron Microscopic Diagnosis Of Mitochondrial Myopathy: The First Case Report From Iran
Muscle tissue, skeletal muscle as well as cardiac muscle, is commonly affected in mitochondrial disorders. One explanation for this observation is that muscle tissue has a high-energy demand and therefore is more sensitive to a deficiency of mitochondrial energy production than some other tissues. In mitochondrial disorders, skeletal muscle tissue may be affected primarily by defective respi...
متن کاملMitochondrial respiratory capacity and coupling control decline with age in human skeletal muscle.
Mitochondrial health is critical to physiological function, particularly in tissues with high ATP turnover, such as striated muscle. It has been postulated that derangements in skeletal muscle mitochondrial function contribute to impaired physical function in older adults. Here, we determined mitochondrial respiratory capacity and coupling control in skeletal muscle biopsies obtained from young...
متن کامل